skip to main content


Search for: All records

Creators/Authors contains: "Carpenter, J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The effects of total ionizing dose (TID) on SRAM physical unclonable functions (PUF) are studied through x-ray and proton irradiation of commercially available SRAM. Negative shifts in the Fractional Hamming Weight (FHW) were measured with increasing TID, indicating a migration of bistable cells towards logic low. Additionally, positive shifts in the intra-die Fractional Hamming Distance (FHD) were measured and indicate changes to the virtual fingerprint of an SRAM PUF with TID, especially in devices that were dosed while holding data. Shifts in inter-die FHD were negligible, allowing individual SRAMs still to be easily identified based on the FHD between a known and unknown sample even after moderate amounts of TID. In some cases, SRAMs could still be identified by their PUFs after the devices had failed. In all cases, the irradiated SRAM devices retain their virtual fingerprint after recovery through annealing. 
    more » « less
  2. We present our experimental results on generating photon pairs entangled in a transverse-mode Bell state in few-mode optical fiber by controlling the transverse mode of the pump to selectively excite spontaneous four-wave mixing processes.

     
    more » « less
  3. null (Ed.)
    We performed a comprehensive demographic study of the CO extent relative to dust of the disk population in the Lupus clouds in order to find indications of dust evolution and possible correlations with other disk properties. We increased the number of disks of the region with measured R CO and R dust from observations with the Atacama Large Millimeter/submillimeter Array to 42, based on the gas emission in the 12 CO J = 2−1 rotational transition and large dust grains emission at ~0.89 mm. The CO integrated emission map is modeled with an elliptical Gaussian or Nuker function, depending on the quantified residuals; the continuum is fit to a Nuker profile from interferometric modeling. The CO and dust sizes, namely the radii enclosing a certain fraction of the respective total flux (e.g., R 68% ), are inferred from the modeling. The CO emission is more extended than the dust continuum, with a R 68% CO / R 68% dust median value of 2.5, for the entire population and for a subsample with high completeness. Six disks, around 15% of the Lupus disk population, have a size ratio above 4. Based on thermo-chemical modeling, this value can only be explained if the disk has undergone grain growth and radial drift. These disks do not have unusual properties, and their properties spread across the population’s ranges of stellar mass ( M ⋆ ), disk mass ( M disk ), CO and dust sizes ( R CO , R dust ), and mass accretion of the entire population. We searched for correlations between the size ratio and M ⋆ , M disk , R CO , and R dust : only a weak monotonic anticorrelation with the R dust is found, which would imply that dust evolution is more prominent in more compact dusty disks. The lack of strong correlations is remarkable: the sample covers a wide range of stellar and disk properties, and the majority of the disks have very similar size ratios. This result suggests that the bulk of the disk population may behave alike and be in a similar evolutionary stage, independent of the stellar and disk properties. These results should be further investigated, since the optical depth difference between CO and dust continuum might play a major role in the observed size ratios of the population. Lastly, we find a monotonic correlation between the CO flux and the CO size. The results for the majority of the disks are consistent with optically thick emission and an average CO temperature of around 30 K; however, the exact value of the temperature is difficult to constrain. 
    more » « less
  4. null (Ed.)
    Context. Protoplanetary disks in dense, massive star-forming regions are strongly affected by their environment. How this environmental impact changes over time is an important constraint on disk evolution and external photoevaporation models. Aims. We characterize the dust emission from 179 disks in the core of the young (0.5 Myr) NGC 2024 cluster. By studying how the disk mass varies within the cluster, and comparing these disks to those in other regions, we aim to determine how external photoevaporation influences disk properties over time. Methods. Using the Atacama Large Millimeter/submillimeter Array, a 2.9′× 2.9′ mosaic centered on NGC 2024 FIR 3 was observed at 225 GHz with a resolution of 0.25″, or ~100 AU. The imaged region contains 179 disks identified at IR wavelengths, seven new disk candidates, and several protostars. Results. The overall detection rate of disks is 32 ± 4%. Few of the disks are resolved, with the exception of a giant ( R = 300 AU) transition disk. Serendipitously, we observe a millimeter flare from an X-ray bright young stellar object (YSO), and resolve continuum emission from a Class 0 YSO in the FIR 3 core. Two distinct disk populations are present: a more massive one in the east, along the dense molecular ridge hosting the FIR 1-5 YSOs, with a detection rate of 45 ± 7%. In the western population, towards IRS 1, only 15 ± 4% of disks are detected. Conclusions. NGC 2024 hosts two distinct disk populations. Disks along the dense molecular ridge are young (0.2–0.5 Myr) and partly shielded from the far ultraviolet radiation of IRS 2b; their masses are similar to isolated 1–3 Myr old SFRs. The western population is older and at lower extinctions, and may be affected by external photoevaporation from both IRS 1 and IRS 2b. However, it is possible these disks had lower masses to begin with. 
    more » « less
  5. ABSTRACT Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of per cent. A standard explanation is that dippers host nearly edge-on (id ≈ 70°) protoplanetary discs that allow close-in (<1 au) dust lifted slightly out of the mid-plane to partially occult the star. The identification of a face-on dipper disc and growing evidence of inner disc misalignments brings this scenario into question. Thus, we uniformly (re)derive the inclinations of 24 dipper discs resolved with (sub-)mm interferometry from ALMA. We find that dipper disc inclinations are consistent with an isotropic distribution over id ≈ 0−75°, above which the occurrence rate declines (likely an observational selection effect due to optically thick disc mid-planes blocking their host stars). These findings indicate that the dipper phenomenon is unrelated to the outer (>10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and ‘broken’ discs caused by inclined (sub-)stellar or planetary companions. 
    more » « less